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Abstract

Using porous ceramic inserts in high temperature equipment has been proven to be an effective means to enhance
combined convective–radiative heat transfer. The porous ceramic insert was referred to as a convection-to-radiation
converter (CRC) by previous investigators. We consider a novel application of CRC cores in a partial by pass flow
system for heat transfer enhancement. Both hydrodynamically and thermally developing laminar flow is considered in
the entrance region of a circular pipe with a porous insert located at the center. The momentum and Darcy–Brink-
man equations are applied to the flow field in the annular gas layer and central porous layer respectively. The energy
equation is coupled with the radiative transfer equation by the radiation source term. The radiative transfer is sim-
ulated by the newly developed integral equations [X.L. Chen, W. Sutton, Radiative transfer in finite cylindrical media
using transformed integral equations, J. Quant. Spectrosc. Radiat. Transfer 77 (3) (2003) 233–271; W. Sutton, X.L.
Chen, A general integration method for radiative transfer in 3-D non-homogeneous cylindrical media with aniso-
tropic scattering, J. Quant. Spectrosc. Radiat. Transfer 84 (2004) 65–103] to avoid singularity problem and give high
accuracy. The working fluid and porous medium are both considered as participating media. Finally, this highly non-
linear system of equations is solved by a mixed iteration method. The results are compared between the cases with
and without the porous insert. The porous insert enhances both convective and radiative transfer by about 35% and
105% respectively at the most. The effects of important parameters on this enhancement are discussed in detail.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Over the years, porous materials have found impor-
tant applications in high temperature thermal energy
systems, where the convection and radiation modes of
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heat transfer are both important. The purpose for
this promising technique is to use porous medium to en-
hance combined convective–radiative transfer, to save
remarkable energy, or to keep heat from releasing from
high temperature areas for combustion requirements in
various industrial furnaces, combustors, and incin-
erators.

For the purpose of enhancing combined convective–
radiative heat transfer, the earliest investigators [1–3]
ed.
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Nomenclature

a coefficients of discretization equations, or
linear anisotropic scattering coefficient

A differential surface area, m2

Bo Boltzmann number, Bo ¼ q�Cpuin
n2rT 3

in

Cp constant pressure specific heat, J/(kg K)
Da Darcy number, Da ¼ K

R2
out

e coefficient related to externally incident radi-
ation and defined in Eq. (14d)

G incident radiation, W/m2

I the intensity of radiation, W/m2

k thermal conductivity, W/(m K)
K permeability, m2

L the pipe length, m
Nu Nusselt number, NuT ¼ qwDout

kðT b�TwÞ
p pressure, N/m2

Pr Prandtl number, Pr ¼ l�Cp

k
q heat flux, or components of net radiative

heat flux, W/m2

Re Reynolds number, Re ¼ q�uinRout

l
R the radius, m
S source term, W/m2

T temperature, K
u velocity in z-direction, m/s
v velocity in r-direction, m/s

Greek symbols

a a specified angle in the transformed coordi-
nate

b extinction coefficient, 1/m
e the surface emissivity

h dimensionless temperature, or angle be-
tween surface normal vector and the inten-
sity

c the specified distance in the transformed
coordinate

l absolute viscosity, N s/m2

q density kg/m3, or surface reflectivity
s optical thickness
u porosity
n an adjustable parameter in the stress jump

condition
v a specified angle in the transformed coordi-

nate
x single scattering albedo
X the unit vector in the intensity direction, or

the solid angle

Superscript

– non-dimensional quantity

Subscripts

b black body, or bulk
e effective
f fluid
in inlet, or inside porous domain
out outlet, or outside fluid domain
r radial direction
z axial direction
w wall
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like Mori et al. suggested adding parallel plates in high
temperature gas side of heat exchangers. The plates re-
ceive heat energy from the gas by convection, and then
emit radiation to the colder absorbing surface. The me-
tal emissivity is much higher than gas emissivity; more
heat can be recaptured by the absorbing surface. Later
Echigo [4] proposed to improve the enhancement effect
by using porous segment placed normal to the flow
direction. Since porous materials have a large surface
area per unit volume and a much stronger radiation
emittance than gas media does, much more energy is
emitted by the porous segments mainly back to the up-
stream direction and cause the temperature to drop
sharply along flow direction. His numerical analysis
was based on the assumptions of non-radiating gas,
non-scattering porous medium, and one-dimensional
simplification. Zhang et al. [5] proposed and solved a
fully developed duct flow with a porous core in the cen-
ter (partial blockage for reduced pressure drop). They
performed numerical analysis and results proved the effi-
ciency of porous core in the enhancement of combined
heat transfer. The essential assumption was fully devel-
oped flow, also no considerations to the inlet and outlet
radiative effects.

This study proposes a similar application of the por-
ous core to [5]. But many realistic factors are considered
to simulate combined convection–radiation in the en-
trance region, which is numerically solved by control
volume method for both flow and temperature fields.
The Brinkman type extension of the Darcy law and Na-
vier–Stokes equation are used to solve the velocity field
in the porous and fluid layers respectively. The newly
developed integral equations of radiative transfer [6,7]
are used to simulate radiation in the emitting, absorbing,
and anisotropically scattering gas and porous media. Fi-
nally, the effects of upstream emissivity, downstream
emissivity, Reynolds number, extinction coefficients,
scattering albedo and Darcy number are presented and
discussed in detail. This non-linear system is believed
to be useful for other application systems.
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2. Governing equations

Geometry consideration consists of a circular duct or
pipe as shown in Fig. 1(a). A porous core is concentri-
cally inserted in pipe with radius Rm. The hot participat-
ing gas enters the pipe with uniform velocity uin and
temperature Tin and is cooled by the cold wall at con-
stant temperature Tw. Both the fluid and porous matrix
are assumed to have constant properties. We consider
axisymmetric, laminar, boundary-layer flow and neglect
axial rate of change of viscous stress. If following dimen-
sionless variables and parameters are introduced

�r ¼ r
Rout

; �z ¼ z
Rout

; �u ¼ u
uin

; �v ¼ v
uin

;

h ¼ T
T in

; �p ¼ p
q � u2in

; Re ¼ q � uinRout

l
;

Pr ¼ l � Cp

k
; Da ¼ K

R2
out

; Bo ¼ q � Cpuin
n2rT 3

in

;

G ¼ G

rT 4
in

; �qr ¼
qr

rT 4
in

; �qz ¼
qz

rT 4
in

;

�I ¼ I

rT 4
in

; �b ¼ b � Rout ð1Þ

governing equations of fluid and porous regions reduce
to following non-dimensional forms:
Continuity equation

Fluid region
1

�r
� oð�r � �vÞ

o�r
þ o�u

o�z
¼ 0; ð2aÞ

Porous region
1

�r
� oð�r � �vÞ

o�r
þ o�u

o�z
¼ 0. ð2bÞ
Fig. 1. Schematic illustration of the flow system. (a) Schematic diagram
flux at the fluid–porous interface; (c) Illustration of the �ghost� points
Momentum equation

Fluid region

1

�r
oð�r�u�vÞ
o�r

þ oð�u�uÞ
o�z

¼ � d�p
d�z

þ 1

Re
1

�r
o

o�r
�r
o�u
o�r

� �� �
; ð3aÞ

Porous region

1

�r
oð�r�u�vÞ
o�r

þ oð�u�uÞ
o�z

¼ �u
d�p
d�z

� u
1

Re � Da
�u

þ 1

ðReÞe
1

�r
o

o�r
�r
o�u
o�r

� �� �
. ð3bÞ

Energy equation

Fluid region

1

�r
oð�r�vhÞ
o�r

þ oð�uhÞ
o�z

¼ 1

RePr
1

�r
o

o�r
�r
oh
o�r

� �
þ o2h

o�z2

� �

þ
�bð1� xÞ

Bo
ðG� 4h4Þ; ð4aÞ

Porous region

1

�r
oð�r�vhÞ
o�r

þ oð�uhÞ
o�z

¼ 1

ðReÞeðPrÞe
1

�r
o

o�r
�r
oh
o�r

� �
þ o2h

o�z2

� �

þ
�bð1� xÞ

Bo
ðG� 4h4Þ. ð4bÞ

In dimensionless variables, u and v are velocity compo-
nents in z or r direction respectively as shown in
Fig. 1(a). The subscript e means effective properties of
porous media. In (Re)e and (Pr)e numbers, le and ke
are used, which are effective viscosity and conductivity
of the porous insert. The Einstein formula can be used
of the flow system and coordinates; (b) Illustration of the heat
at the fluid–porous interface.



X. Chen, W.H. Sutton / International Journal of Heat and Mass Transfer 48 (2005) 5460–5474 5463
to obtain le, but in this work, we assume le = l [8]. The
following equation is used to compute ke:

ke ¼ u � kf þ ð1� uÞks; ð5Þ

where kf, ks is the conductivity of fluid or solid material
of the porous insert respectively. The inertial term is not
considered in Eq. (3b). When certain length scale con-
straints are satisfied, Darcy�s law with the first Brinkman
correction without inertial effects is derived for homoge-
neous porous region [9,10]. Also this inertial effect is
found to be insignificant in [11]. The last terms in the en-
ergy equations are contributions of thermal radiation
and are dimensionless expressions of the negative value
of the divergence of net radiative heat flux, which can
be computed for gray radiation by the following
relation:

�r �~qR ¼ bð1� xÞðG� 4n2rT 4Þ; ð6Þ

where~qR is the net radiative heat flux; n is the refractive
index, which is assumed as one.

Due to the boundary-layer flow simplifications, the
radial momentum equation has been neglected. Instead,
we use the integrated mass conservation equation to
complete the problem:Z 1

0

2p�r�u � d�r ¼ p. ð7Þ

For momentum and energy equations, the dimensionless
boundary conditions are

At inlet boundary �z ¼ 0 :

�u ¼ 1; �v ¼ 0; h ¼ 1.

At outlet boundary �z ¼ L
Rout

:

outflow boundary condition:

At centerline �r ¼ 0:

o�u
o�r

¼ 0;
oh
o�r

¼ 0.

At interface �r ¼ Rm ¼ Rm

Rout

:

�ufluid ¼ �uporous;
1

Re
o�ufluid
o�r

¼ 1

Ree

o�uporous
o�r

;

hfluid ¼ hporous;
1

RePr
ohfluid

o�r
¼ 1

ðReÞeðPrÞe
ohporous

o�r

At outside wall �r ¼ 1:

�u ¼ �v ¼ 0; h ¼ hw ¼ T w

T in

.

ð8Þ

where the outflow boundary condition is that the region
near the outflow boundary exhibits local one-way
behavior when Peclet number is sufficiently large [12].
At the fluid–porous interface, non-jump condition is
used. But the stress jump condition has been recognized
[9]. Good agreement with experiment was achieved by a
single adjustable parameter that appears in the extra
term of the jump condition [10]. The effects of the
parameter will be discussed later.

2.1. Radiative transfer equation (RTE)

In order to obtain source terms included in energy
equations, we have to consider the radiative transfer
equation. We use the newly developed integral equations
[6,7] to calculate incident radiation and components of
the net heat flux. We know that the incident radiation
and heat flux at a particular point can be evaluated by
the integration of the intensity at that point over full
4p solid angle. In axisymmetric 2-D cylindrical coordi-
nate system [7],

Gð�z;�rÞ ¼
Z
4p

�Ið�z;�r; X̂Þ � dX; ð9aÞ

�qrð�z;�rÞ ¼
Z
4p

�Ið�z;�r; X̂Þ � cosðêr; X̂Þ � dX; ð9bÞ

�qzð�z;�rÞ ¼
Z
4p

�Ið�z;�r; X̂Þ � cosðêz; X̂Þ � dX; ð9cÞ

where �qr, �qz are components of the net heat flux.
�Ið�z;�r; X̂Þ is the intensity at position sð�z;�rÞ and in X̂
direction,

�Ið�z;�r; X̂Þ ¼ �I i exp �sðsi; sÞ½ 	 þ
Z s

si

�bðs0ÞSðs0; X̂Þ

� exp �sðs0; sÞ½ 	 � d�s0; ð10Þ

where si is the boundary point, X̂ is the ray direction
from start point si to end point s, and s 0 is the interme-
diate point between si and s. �I i is the entering intensity at
boundary i (i = 1, 2, 3 for inlet, outlet, and outside
boundary respectively). The above equation is the for-
mal solution of the RTE [13]. The source term in above
equation can be expressed as follows if the linear-aniso-
tropic scattering phase function is assumed:

S ¼ ð1� xÞ�IbðhÞ þ
x
4p

n
Gð�z;�rÞ

þa1 �qrð�z;�rÞ cosðêr; X̂Þ þ �qzð�z;�rÞ cosðêz; X̂Þ
h io

;

ð11Þ

where

�IbðhÞ ¼
h4

p
. ð12Þ

The optical thickness in Eq. (10) is defined by

sðsi; sÞ ¼
Z s

si

bðs0Þds0 ¼
Z s

si

�bðs0Þ ds0

Rout

¼
Z s

si

�bðs0Þd�s0.

ð13Þ
The radiative boundary conditions are:

At inlet �z ¼ 0; transparent boundary:

�I1ð0;�rÞ ¼ �f 1 ¼
f1ðrÞ
rT 4

in

; ð14aÞ
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At outlet �z ¼ L
Rout

; transparent boundary :

�I2ð�L;�rÞ ¼ �f 2 ¼
f2ðrÞ
rT 4

in

; ð14bÞ

At the opaque wall �r ¼ 1 :

�I3ð�z; 1Þ ¼
ewh4

w

p
þ qw

p

Z
2p

�Ið�z; 1Þ cosðêr; X̂ÞdX; ð14cÞ

where f1 and f2 are possible externally incident radia-
tions at the inlet and outlet. In order to be compatible
with temperature boundary conditions, we assume they
can be expressed in the form:

f1 ¼ e1
rT 4

in

p

� �
; f 2 ¼ e2

rT 4ðL; rÞ
p

� �
; ð14dÞ

where the coefficients e1 and e2 are between [0,1] in order
to be compatible with different actual situations, for
example colder source temperature. Most investigators
assume upstream and downstream incoming radiation
as black body source at inlet and outlet temperature,
that is e1 and e2 are assumed to be 1.0 in the above equa-
tions. Assuming e1 and e2 equal to 1.0 may strongly af-
fect the analysis results, as indicated below.

The inlet and exit boundary conditions for radiative
heat transfer depend on a number of factors. If a region
up or downstream beyond the porous insert is large, in
comparison to the adjacent area normal to the flow,
while the gas is radiatively transparent, then the incident
radiation will appear to originate from radiatively black
walls. This could result in a colder temperature radi-
atively than the continuous average inlet or exit gas tem-
perature. If the same external relatively large (in
comparison to the flow area) region has a luminous
combustion or an optically thick gas, then the condition
will appear as radiatively black at the gas temperature. If
the same region is of the same order of size as the flow
area while the walls are not black (for example refrac-
tory brick) or the gas is semi-transparent, then the up
or downstream radiative problem must be solved prior
to input to the current combined problem. Here, the
radiation is specified as an incident radiative intensity
at either end of the duct being analyzed. Thus, any of
the conditions above can be replicated. When both e1
and e2 equal to 1.0, we have the maximum externally
incident radiations.
3. Numerical methods

Because the momentum equations, energy equations
and radiative transfer equation are solved by different
numerical techniques, the flow-heat transfer problem
and radiative transfer problem are treated separately in
the following sections.
3.1. Numerical method for momentum and energy

equations

CFD control volume method is used to get discretiza-
tion equations of momentum and energy equations. The
computing domain is divided into a number of non-
overlapping control volumes (CV) and each differential
equation is integrated over the control volume. The stag-
gered grids and the power-law scheme are adopted. The
two-dimensional discretization equation may be ex-
pressed at a point P in terms of adjacent East, West,
South and North neighbors:

aPUP ¼ aEUE þ aWUW þ aSUS þ aNUN þ b; ð15Þ

where U could be dimensionless velocity �u or tempera-
ture h. The coefficients are determined by F, D, and P,
which are the strength of convection, the diffusion con-
ductance, and Peclet number of that CV [12]. The coef-
ficients are also determined by the source term. For
momentum equations, source terms in fluid region and
porous region are expressed by

Sfluid ¼
�pw � �pe

D�z
; Sporous ¼

uð�pw � �peÞ
D�z

� u
ReDa

�up.

ð16a; bÞ

For energy equations, the source term expression in por-
ous region is the same as in fluid region:

S ¼
�bð1� xÞ

Bo
ðGþ 12h�4Þ � 16�bð1� xÞ

Bo
h�3hP ; ð17Þ

where h* is the previous iteration value of h. To bring
the problem to closure, the total mass conservation
equation (7) is used to get a pressure correction
equation.

The computation domain includes fluid and porous
regions, so obtaining a good representation for the heat
flux at the interface is important to get the correct solu-
tion. There are two kinds of grid schemes to deal with
this difficulty. One is shown in Fig. 1(b) and another is
shown in Fig. 1(c). In Fig. 1(b), control volume face n
locates exactly on the interface, we have the harmonic
diffusion coefficient expressed as

Cn ¼
lnð�rN=�rP Þ

lnð�rn=�rP Þ
CP

þ lnð�rN =�rnÞ
CN

; ð18Þ

where C represents conductivity and viscosity in energy
and momentum equations respectively.

3.2. Numerical method for radiative transfer equations

The interface for thermal radiation is assumed free
and non-reflecting. The medium is enclosed by three
bounding surfaces i (i = 1, 2, 3). The solid angle integra-
tion for incident radiation and heat fluxes could be
transformed to surface integrations:
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Gð�z;�rÞ¼
X3

i¼1

Z Z
i

�Ið�z;�r;X̂Þ � coshi

�d
2ðsi;sÞ

d�Ai; ð19aÞ

�qrð�z;�rÞ¼
X3

i¼1

Z Z
i

�Ið�z;�r;X̂Þ � cosðêr;X̂Þ coshi

�d
2ðsi;sÞ

d�Ai; ð19bÞ

�qzð�z;�rÞ¼
X3

i¼1

Z Z
i

�Ið�z;�r;X̂Þ � cosðêz;X̂Þ coshi

�d
2ðsi;sÞ

d�Ai; ð19cÞ

where hi is the angle between the unit normal vector n̂i of
surface i and the intensity direction X̂. Cosines are re-
ferred to [6,7]. The term �dðsi; sÞ is the dimensionless dis-
tance from point sið�zi;�ri;/iÞ on the boundary i to point
sð�z;�r;/Þ in the medium.

�dðsi; sÞ ¼ �r2i þ �r2 � 2�ri�r cosð/ � /iÞ þ ð�z� �ziÞ2
h i1=2

.

ð20Þ

For 2-D problem, / vanishes. Please note that the sur-
face integration involves only the geometry. Radiation
properties augment the calculation of the intensity.

To calculate surface integrations easier and without
singularity near boundaries, we transfer the coordinate
ð�zi;�ri;/iÞ (i = 1, 2, 3) of integration to a new coordinate
(a,c,v) system [6,7]. By doing so, we have

Gð�z;�rÞ ¼
Z p

�p

Z cR

0

�I
c
ð� sin a1Þcos2a1 dcdv

þ
Z p

�p

Z cR

0

�I
c
sin a2cos

2a2 dcdv

þ
Z p

�p

Z a2

a1

�I � cos a � dadv; ð21aÞ

�qrð�z;�rÞ ¼
Z p

�p

Z cR

0

�I
c
sin a1cos

3a1 cos vdcdv

þ
Z p

�p

Z cR

0

�I
c
sin a2cos

3a2ð� cos vÞdcdv

þ
Z p

�p

Z a2

a1

�I � cos2að� cos vÞdadv; ð21bÞ

�qzð�z;�rÞ ¼
Z p

�p

Z cR

0

�I
c
sin2a1cos

2a1 dcdv

þ
Z p

�p

Z cR

0

�I
c
ð�1Þsin2a2cos

2a2 dcdv

þ
Z p

�p

Z a2

a1

�I � ð� sin aÞ cos a � dadv; ð21cÞ

where

cR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
2

out � �r2sin2v
q

� �r cos v; ð22Þ

a1 ¼ arctan
0� �z

c
; a2 ¼ arctan

�L� �z
c

. ð23a; bÞ

Once the new coordinate (a,c,v) is known, the old
coordinate ð�zi;�ri;/iÞ can be obtained [6,7]. The old
coordinate ð�zi;�ri;/iÞ is needed in computing the
intensity.

3.3. The intensity

Considering a radiative ray along the path starting
from point sið�zi;�ri;/iÞ to point sð�z;�r;/Þ, the radiation
intensity is computed by Eq. (10). Here we have two lay-
ers with different properties, so we need to integrate by
segments. A step-change extinction coefficient and scat-
tering albedo are assumed in the radial direction as
follows:

bð�z0;�r0Þ ¼ bin ¼ bporous; xð�z0;�r0Þ ¼ xin ¼ xporous;

when 0 6 �r0 6 Rm; ð24aÞ

bð�z0;�r0Þ ¼ bout ¼ bfluid; xð�z0;�r0Þ ¼ xout ¼ xfluid;

when Rm 6 �r0 6 Rout. ð24bÞ

If the line sis across these two layers, the intensity
from start point sið�zi;�ri;/iÞ to point sð�z;�r;/Þ will go
through different layers. The position of intersection is
required.

If any point s0ð�z0;�r0;/0Þ lays on the line sis, then

�z0 ¼ �zi þ ð�z� �ziÞ � t; �r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x02 þ �y02

p
; ð25a; bÞ

where

�x0 ¼ �xi þ ð�x� �xiÞ � t

¼ �ri cos/i þ ð�r cos/ � �ri cos/iÞ � t; ð25cÞ

�y0 ¼ �yi þ ð�y � �yiÞ � t

¼ �ri sin/i þ ð�r sin/ � �ri sin/iÞ � t; ð25dÞ

where 1 P tP 0. The intersection point of the line and
the circle �r ¼ Rm is solved for t as:

t1;2 ¼
�ri½�ri ��rcosð/�/iÞ	


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2i �ri ��rcosð/�/iÞ½ 	2þ c2ðR2

m��r2i Þ
q

½�r2þ�r2i �2rri cosð/�/iÞ	
.

ð26Þ

In above equation, the ��� operation in the numerator
goes with solution t1 and the �+� operation goes with
solution t2. So the root t2 is always greater than t1. From
systematic analysis of t1,2 equation, we have following
possibilities:

If �r 6 Rm (for schematic diagram, refer [7])

(1) When t1, t2 62 [0,0.1].
�Ið�z;�r; X̂Þ ¼ �I i exp½��bin
�dðsi; sÞ	

þ
Z 1

0

�binSðxinÞ exp½��binð1� tÞ�dðsi; sÞ	

� �dðsi; sÞdt. ð27aÞ
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(2) When only t1 2 [0,1].
�Ið�z;�r; X̂Þ
¼ �I i exp �½�boutt1 þ �binð1� t1Þ	�dðsi; sÞ

� �

þ
Z t1

0

�boutSðxoutÞ exp �½�boutðt1 � tÞ
�

þ�binð1� t1Þ	�dðsi; sÞ
�
�dðsi; sÞdt þ

Z 1

t1

�binSðxinÞ

� exp½��binð1� tÞ�dðsi; sÞ	�dðsi; sÞdt. ð27bÞ

If �r P Rm (for schematic diagram, refer [7]).

(3) When no solution or t1, t2 62 [0,1]
�Ið�z;�r; X̂Þ ¼ �I i exp½��bout
�dðsi; sÞ	 þ

Z 1

0

�boutSðxoutÞ

� exp½��boutð1� tÞ�dðsi; sÞ	�dðsi; sÞdt.
ð27cÞ
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�Ið�z;�r; X̂Þ ¼ �I i exp �½�bint2 þ �boutð1� t2Þ	�dðsi; sÞ
� �

þ
Z t2

0

�binSðxinÞ exp �½�binðt2 � tÞ
�

þ�boutð1� t2Þ	�dðsi; sÞ
�
�dðsi; sÞdt

þ
Z 1

t2

�boutSðxoutÞ

� exp½��boutð1� tÞ�dðsi; sÞ	�dðsi; sÞdt.
ð27dÞ
1
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� exp½��boutð1� tÞ�dðsi; sÞ	�dðsi; sÞdt.
ð27eÞ
zd

Fig. 2. Isotherms of pure convection and combined convection–
radiation case, with and without the insert. Tin = 1200 K,
Tw = 500 K. (a) Pure convection, Rm ¼ 0, Re = 1000; (b)
Combined convection–radiation, Rm ¼ 0, Re = 1000, ew =
0.8, e1 = e2 = 0.5, bfluid = 0.5 m�1, xfluid = 0; (c) Pure convec-
tion, Rm ¼ 0.5, Re = 1000, Da = 0.01; (d) Combined convec-
tion–radiation, Rm ¼ 0.5, Re = 1000, Da = 0.01, ew = 0.8,
e1 = e2 = 0.5, bfluid = 0.5 m�1, xfluid = 0, bporous = 200 m�1,
xporous = 0.8.
In order to evaluate these coupled equations, 42 · 18
(longitudinal · radial) grids divided the domain. Subse-
quently, we used 80 · 38 grids to divide the domain
for the same case. Two results had an average difference
about 0.093%. Computations took about 16 h for
42 · 18 case, and about 70 h for 80 · 38 case in Digital
FORTRAN 5.0 on a generic PC with 1 GB memory
and an AMD AthlonTM XP 1.2 GHz processor. So the
grid size 42 · 18 gave efficient convergence and saved
significant computing time. The fluid region and porous
region used different grid sizes. Piecewise second order
Lagrange polynomial interpolation was assumed for
the incident radiation, heat fluxes and entering intensity
at the boundaries. Twenty point Gauss–Legendre quad-
rature was used to integrate radiative equations and line-
by-line iteration method (plus TDMA) was used to solve
all equations simultaneously. It was found that the solu-
tion was stable while the convergence criterion set very
small (10�5–10�8). The values of incident radiation
and heat fluxes on the boundaries were obtained by di-
rect computation from the integrals [6,7]. The corner
point values, which are the values at the intersection
point of boundaries, were obtained by multidimensional
extrapolation.
4. Results and discussion

In order to evaluate the enhancement of heat transfer
by using the porous insert, following calculation of the
dimensionless bulk temperature is necessary

hb ¼
R 1

0
�uh � �rd�rR 1

0
�u�rd�r

. ð28Þ
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Table 1
The comparison for the case defined in [5] as ni = 0.5, sf = 0.01,
hw = 0.2, N = 0.002 and PrRe = 4000 (above parameter defi-
nitions are detailed in [5])

ni Nuc,m Nur,m hb,out

Zhang et al. [5] 0.5 14.89 22.73 0.67
Current work 0.5 (RmÞ 16.18 30.64 0.61
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Fig. 4. Convective and radiative Nusselt number with and without the porous insert.
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The total Nusselt number is related to the total heat flux
through the cooling wall

NuT ¼ 2qwRout

kðhb � hwÞT in

; ð29Þ
where,

qw ¼ qwc þ qwr; ð30Þ

qwc, qwr are the contributions of convection and radia-
tion respectively. They are determined by

qwc ¼ � kT in

Rout

� �
oh
o�r

����
w

; qwr ¼ �qrðz;RoutÞ � rT 4
in. ð31a; bÞ

Further,

Nuc ¼
2qwcRout

kðhb � hwÞT in

¼ 2

ðhw � hbÞ
oh
o�r

����
w

;

Nur ¼
2qwrRout

kðhb � hwÞT in

. ð32a; bÞ
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In order to evaluate effects of the porous insert and
due to limited data in the literature, the computations
are carried out on in-pipe flow with and without a porous
insert. Following values are adopted: Re = 100–1000,
Tin = 1200 K, Tw = 500, 800 K, ew = 0.8, 1.0, Rout =
0.1 m, Rm ¼ 0; 0.2; 0.5, L = 0.8 m, Da = 10�4–1.0,
u = 0.875, ke = 5kf, bin = bporous = 100, 200, 400 m�1,
xin = xporous = 0.5, 0.75, 0.8, bfluid = 0, 0.1, 0.5, 5 m�1,
xfluid = 0–0.2, e1, e2 = 0.05–1.0, a1 = 0, the fluid proper-
ties are assumed to be the properties of dry air at 1000 K.
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different coefficient e1; (b) Radiative flux distributions with and witho
In order to compare effects of the porous insert on
pure convection and combined convection–radiation,
temperature fields under these situations with and with-
out the insert are shown in Fig. 2. In pure convection
case, using the porous insert has forced the temperature
gradient near the cooling wall to increase as illustrated
in (a) and (c). So the convection is improved. In com-
bined convection–radiation case, using the porous insert
has caused the porous core temperature to drop a lot as
illustrated in (b) and (d). The fluid transfers heat to the
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porous insert by convection; in return, the insert emits
significant heat to the receiving wall by radiation.

The average bulk temperature drops along flow
direction as shown in Fig. 3, which is compared with re-
sults of Zhang et al. [5]. Current dimensionless tempera-
ture is about 10% lower. This is mainly due to the fully
developed velocity assumption in both porous and fluid
regions by [5]. This work is simulating developing veloc-
ity. Another influence may come from the inertial term
used in [5]. But this effect should be negligible [11].
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The comparison of Nusselt numbers between [5] and
current work is listed in Table 1. The mean radiation
Nusselt number of current work is about 30% larger.
In the entrance length here, more fluid pass through
the porous region, so the porous insert could capture
more heat from fluid by convection. The insert then
emits more energy to the cold wall. The case parameters
are chosen to satisfy conditions defined in [5].

The convective and radiative Nusselt numbers in the
cases with and without the porous insert are shown in
.0 5.0 6.0 7.0 8.0
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Fig. 4. Under combined convection–radiation situation,
the convective Nusselt number will be increased by
average 30% if a porous insert with Rm ¼ 0.5 is used.
While the radiative Nusselt number can be increased
to more than two times of that without a insert. The
benefits of the insert are obvious and desirable. We will
discuss the influences of some important parameters
below.

4.1. The externally incident radiation

For the enhancement effect of the insert to radiative
transfer, many parameters have impact on final results.
The defined externally incident radiation at the inlet or
outlet boundary (coefficient e1 or e2) has important ef-
fects on the radiative flux at the cooling wall. The effects
of coefficient e1 are shown in Fig. 5(a). For all three dif-
ferent e1 values in the figure, the radiative flux at the
cooling wall is enhanced greatly by using a porous insert
especially near the inlet. The heat flux can be increased
to approximately 1.1–2.7 times of that without an insert.
This enhancement effect of the porous is stronger when
e1 is 0.05 than e1 is 1.0. The reason is the shield effect
of the porous insert to the incoming radiation from up-
stream, illustrated in Fig. 6. When e1 is 1.0, a largest
amount of the radiant energy comes freely into the do-
main if no insert installed. But with a Rm ¼ 0.5 insert,
most of the radiant energy will be shielded and the total
incoming energy is decreased. This shield effect of the
porous insert is stronger at larger e1. When e1 is 0.05,
the insert helps emitting more radiative energy back to
the upstream.
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Fig. 8. Effects of the porous insert un
As expected, the effects of coefficient e2 are not as
strong as that of e1, because downstream temperature
is much lower than upstream temperature after going
through this cooling section. These effects of e2 are
shown in Fig. 5(b). At the smallest e2 = 0.05, the heat
flux qwr is enhanced along the whole length by using
the insert. But when e2 is increased to 0.5 and 1.0, the
heat flux qwr is even lowered in a small range near the
outlet. The shield effect prevents radiation returning to
the domain from downstream.

4.2. The radius of the porous insert

The distributions of radiative flux at the cooling wall
when Rm ¼ 0.2; 0.5 are shown in Fig. 7. At smaller coef-
ficients e1 = e2 = 0.05, the heat flux is increased by using
a Rm ¼ 0.2 insert to about 1.1–1.3 times of that without
an insert, while about 1.6–2.7 times if Rm ¼ 0.5. At lar-
ger coefficients e1 = e2 = 1.0, a Rm ¼ 0.2 porous insert
will force the radiative flux to be enhanced to only
1.07 times, but approximately 1.38 times if Rm ¼ 0.5.
So a larger radius brings bigger enhancement effect.

4.3. Reynolds number

Reynolds number effects on the enhancement due to
an insert are shown in Fig. 8. The enhancement of the
radiative flux is increased with Reynolds number. Under
parameters stated in the figure and Re = 1000, the radi-
ative flux could be increased to about 1.1–1.38 times of
that in clear flow, while only about 1.03–1.2 times if
Re = 100.
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4.4. The properties of the porous insert

The effects of the scattering albedo of the porous in-
sert on radiative transfer are shown in Fig. 9(a). A smal-
ler albedo causes larger radiative energy transferred to
the cooling wall. As expected, this effect is increased if
the radius of the insert is increased. The extinction coef-
ficient of the insert has significant effect on the enhance-
ment as shown in Fig. 9(b). Increasing the extinction
coefficient has the same effect as decreasing the scatter-
ing albedo. Larger extinction coefficient brings bigger
enhancement effect, especially near the inlet. As the
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Fig. 9. Effects of porous properties on the radiative heat flux at wall: (
radiative flux under different porous extinction coefficients.
extinction coefficient is increased from 200 m�1 to
400 m�1, the radiative flux can be increased to about
1.06–1.09 times by using a Rm ¼ 0.2 insert, and about
1.15–1.5 times for Rm ¼ 0.5. Choosing porous material
with small scattering albedo and large extinction coeffi-
cient for the insert should enhance heat transfer.

4.5. Darcy number Da

The effects of Darcy number are important for all
porous materials. The developing profiles of the flow
field at Da = 0.01 and 0.001 are shown in Fig. 10(a)
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Fig. 10. Effects of Darcy number, Rm ¼ 0.2, Re = 1000, Tin=1200 K, Tw = 500 K, ew = 0.8, e1 = e2 = 0.05, 0.5, bfluid = 0.5 m�1,
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and (b) respectively. It is interesting to note that when
the fluid flows in z-direction, some of the fluid will flow
from the porous domain to the clear domain. So, the
velocity in the clear domain increases, while the velocity
in the porous domain decreases. The mass flow rate in
the porous domain increases with Darcy number when
fully developed.

The effects of Darcy number on the radiative transfer
are illustrated in Fig. 10(c). Increasing Darcy number
will enhance the heat transfer. When Darcy number is
increased from 0.0001 to 0.01, the radiative flux in-
creases from 1.05–1.23 times to 1.10–1.38 times of clear
flow. This is because the convection inside porous media
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Fig. 11. Effects of parameter n on flow and heat transfer in the interfa
(b) Convective heat flux at the interface under different n.
is improved under large Darcy number, so more energy
in fluid can be captured and transferred out in radiation.
But if Darcy number is further increased from 0.01 to
0.1, the radiative flux increases little. The heat flux of
Darcy number 1.0 remains approximately the same as
Darcy number 0.1.

Large Darcy number will benefit the radiative trans-
fer enhancement, but the value of Da is normally much
less than unity. Weinert and Lage [14] in 1994 reported a
sample of compressed aluminum foam of 1 mm thick,
which has a Da number about 8 and is �hyper-porous
medium�. Cordierite ceramic foam (manufactured by
Bridgestone Tyre Co. Ltd) was made into a plate sample
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and investigated by Kamiuto etc. [15], properties
are: porosity = 0.879, pore diameter = (2.82–6.35) ·
10�3 m, extinction coefficient = 212.3 m�1, and albedo
of about 1.0. By using Kozeny�s equation, permeability
is calculated as 1.04 · 10�5 m2. Darcy number is
1.04 · 10�3. From the radiative transfer and pressure
drop point of view, the bigger Da number the better.
In this work, properties of porous medium are approxi-
mate to cordierite.

4.6. Parameter in the stress jump condition

The stress jump condition provided by [9] is

oufluid
or

¼ u�1 ouporous
or

� nffiffiffiffi
K

p uporous; ð33Þ

where the parameter n is of order one predicted by the
theory. It could be positive or negative. The effects of
positive and negative n are shown in Fig. 11(a) and
(b). The velocity distributions at the outlet are shown
in (a). In the area close to the interface, more fluid flow
through when n = 0.7 > 0, while less fluid flow through
when n = �0.7 < 0. The convection heat flux at the
interface is shown in (b). Larger parameter n enhances
convection at the interface.
5. Conclusions

In this paper, a combined convective–radiative heat
transfer computation scheme is proposed and used to
solve combined problems, with and without the porous
core. Radiation in a two-layer non-homogeneous partic-
ipating medium is solved by newly developed trans-
formed integral equations. With the insert, the
radiative transfer and convective heat transfer are both
enhanced. With a Rm ¼ 0.5 porous insert, the convective
Nusselt number can be increased up to 35% and the
radiative Nusselt number can be increased up to 105%.
The porous insert has a shield effect to the incoming
externally incident radiation both from upstream and
downstream. This shield effect of the porous medium
emitting radiation more back to the upstream direction
is desirable in some energy systems. The heat transfer
enhancement to the cooling wall is larger under a bigger
radius of the insert and a faster velocity. The large
extinction coefficient and small scattering albedo of the
porous material benefit the enhancement of heat trans-
fer. Using the porous insert in optical thick working
gas has relatively little effect of the enhancement.
Increasing Darcy number of the porous insert will also
increase this enhancement effect.
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